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Abstract 

In this paper, we consider the dynamical properties of the time delayed chemostat 
model composed of the resource, antibiotic, and two bacteria (one is sensitive and 
the other is resistant by the antibiotic). First, we give a model and summarize 
several known results on the basic properties of the model such as the existence   
of the equilibrium and stability of the equilibrium by the Hopf bifurcation theory. 
Then numerical simulations are presented to illustrate the results of periodic 
solution. 

1. Introduction 

Many years ago, antibiotics have been critical in the fight against 
infectious disease caused by bacteria and other microbes. Disease-causing 
microbes that have become resistant to antibiotic drug therapy are an 
increasing public health problem. Nowadays, about 70 percent of the 
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bacteria that cause infections in hospital are resistant to at least one of 
the drugs most commonly used for treatment [11]. Some organisms are 
resistant to all approved antibiotics and can only be treated with 
experimental and potentially toxic drugs. Microbial development of 
resistance, as well as economic incentives, has resulted in research and 
development in the search for new antibiotics in order to maintain a pool 
of effective drugs at all times. While the development of resistant strains 
is inevitable, the slack ways that we administer and use antibiotics has 
greatly exacerbated the process. In the face of a microbe’s inherent ability 
to develop antibiotic resistance, many societal, medical, and agricultural 
practices contribute to this process, foremost of which are discussed 
below. 

Evidence also began to accumulate that bacteria could pass genes for 
drug resistance between strains and even between species. For example, 
antibiotic-resistance genes of staphylococci are carried on plasmid that 
can be exchanged with Bacillus, Streptococcus, and Enterococcus 
providing the means for acquiring additional genes and gene 
combinations. Some are carried on transposes, segments of DNA that can 
exist either in the chromosome or in plasmid. Once the resistance genes 
have developed, they are transferred directly to all the bacteria's progeny 
during DNA replication. This is known as vertical gene transfer or 
vertical evolution. 

Several mechanisms have evolved in bacteria, which confer them with 
antibiotic resistance. These mechanisms can either chemically modify the 
antibiotic, render it inactive through physical removal from the cell, or 
modify target site so that, it is not recognized by the antibiotic. The most 
common mode is enzymatic inactivation of the antibiotic. An existing 
cellular enzyme is modified to react with the antibiotic in such a way that 
it no longer affects the microorganism. An alternative strategy utilized by 
many bacteria is the alteration of the antibiotic target site. These and 
other mechanisms are shown in Figure 1. 
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Figure 1. Bacteria’s mechanisms. 

One of the first models for phage-bacteria interaction was proposed by 
A. Campbell [2]. The next model was proposed by B. R. Levin et al. [6]. 
They attempt to analyze the model of bacteria and virulent 
bacteriophage. In 2002 and 2004, E. Beretta and F. Solinano [1] 
developed model for bacteria and virulent bacteriophage interaction with 
latency period. 

In 2007, T. Puttasontiphot et al. [9] shown the model that improve the 
transferring of resistant bacteria to susceptible bacteria. In this paper, we 
will use this model to present the model of two bacteria of delay (latency 
period) incorporating the realistic through time death rate in linear 
stability analysis brings to characteristic equations with delay. 

2. Model Construction 
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We consider a chemostat model with variables ( ) ( ) ( ),,, tCtRtS  and ( ),tA  
which present for the population of susceptible bacteria, the population of 
resistant bacteria, the concentration of the resource, and the 
concentration of the antibiotic, respectively. 

The first term on the right hand side of Equation (2.1) is the growth 
rate of the susceptible population level as level S. The second term 
accounts for the reduction in the number of susceptible population level 
as its member is converted into a resistant strain due to the acquisition of 
an extra chromosomal element, or plasmid, from members of the resistant 
strain. Resistance can also be due to chromosomal mutation that renders 
the strain insensitive to the antibiotics [8]. The resistant bacteria are 
viruses, which attack the susceptible bacteria. The third term is the rate 
at which the susceptible bacteria are killed off by the antibiotic. The last 
term is then the rate of removal of S by natural means. The response 
functions used in Equations (2.1) and (2.2) are of the Holling's type 
generally assumed in many previous population models [4], [5]. In 
Equation (2.4), the antibiotic is removed naturally at the rate, that is 
proportional to its amount A at any time t. 

Equation (2.2) describes the rate of change of the resistant population 
level R growing at the rate given by the first term, which assumes a 
Holling type saturating function of the substrate concentration C. The 
second term in Equation (2.2) accounts for the increase in R due to the 
development of resistance in the susceptible strain. The time elapsing 
from the instant of infection, i.e., when the virus injects the content of the 
virus head inside the bacterium, to the instant of the bacterium cell wall-
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lysis, at which γε  copies of assembled phages are released in chemostat 

solution, is called latency time [1] and is denoted by .τ  This term needs 
the latent period of the infected bacteria in order to describe this 
phenomenon. So, this term has the latency time that is used in the second 
term in Equation (2.1). The last term is then naturally removed at the 
rate .2Rω  

Equation (2.3) describes the rate of change of the nutrient or 
substrate C. The second term on the right hand side accounts for its 
consumption by the susceptible bacteria S, while the last term accounts 
for that by the resistant R. Since S is sensitive to the presence of 
antibiotic A, the consumption rate by S is reduced as A increases, and 
thus, the factor Aaγ+1  in the denominator of this term. 

Since Equation (2.4) is autonomous and depends only on A, it can be 
easily solved for ( ),tA  which is found to tend eventually to 1A  as time 
progresses. We may therefore consider the above model in the event that 
A has reached the level .1A  We are thus reduced to the following three 

equations for :0tt ≥  
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with initial conditions 

( ) ,000 StS =  

( ) ,000 RtR =  

( ) .000 CtC =  

Therefore, our model consists of Equations (2.5)-(2.7). 
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3. Model Analysis 

In order to apply the singular perturbation method to our system of 
Equations (2.5)-(2.7), we scale the dynamics of the three hierarchical 
components of the system by means of two small dimensionless positive 
parameters ε  and ,δ  and introduce the following new system 

parameters. 
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( ) ( ) ,,,, ττ ττ ytRxtSzCyR =−=−==  we are led to the following 

system of differential equations: 
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First, we prove a result on the existence and uniqueness of the steady 
state solution ( ),,, sss zyx  where ( ) ( ) ( ,,,,, sssssss xhzyxgzyxf ==  

) 0, =ss zy  for the system (3.1)-(3.3) with (3.4)-(3.6). This result yields 

the following delineating conditions [9]. 

Lemma 3.1. The system of Equations (3.1)-(3.3) with (3.4)-(3.6) has a 
unique non-washout steady state solution ( ) ,0,0,,, >> sssss yxzyx  

,0>sz  provided that 

( ) ,0121 >ω+−γ aa   (3.7) 

,02 >ω−/Rv   (3.8) 

,02 >ω−εγγ   (3.9) 

,0>−γ γk   (3.10) 

( ) ( ) .0121 >ω+−−γ γ aka   (3.11) 

Proof. see in [9].   

4. Existence of Sustained Oscillation 
Dependent on Delay 

In order to investigate the effect of delays on the possibility of 
periodic dynamics in our system, we now assume that sss zyx ,,  is the 

unique non-washout steady state of our model system. 

Letting ,,, sss zzZyyYxxX −=−=−=  we will be led to the 

following linearized system of (3.1)-(3.3) with (3.4)-(3.6) 
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where A is the corresponding Jacobian matrix evaluated at ,,, sss zyx  

namely, 
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We may then write the associated characteristic equation of the model 
system as 
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( ) ( ) ,065
2
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2

1
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where 

;51101 BBBr −−=  
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;10642615 BBBBBBr −+=  

.863104294310616 BBBBBBBBBBBBr −++=  

According to the Hopf bifurcation theory, for a periodic solution to exist, it 
is necessary that Equation (4.3) has a pair of pure imaginary complex 
roots ( ),ω±=λ i  for some value of .τ  In order that such a pair can be 

found, one must have ( ) ,0=ωiF  that is, 
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Equating real and imaginary parts on the right of Equation (4.4) to zero, 
we obtain the following two equations 
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Squaring both sides of Equations (4.5) and (4.6), then adding, one is led to 
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Setting 2ω  in Equation (4.7), we arrive at the following equation 

( ) ,023 =+++≡φ rqnpnnn   (4.8) 
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where 
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We see that Equation (4.3) will have a pair of complex solutions 

( ),ω±=λ i  if Equation (4.8) has a positive real solution .02 >ω=n  

For such a polynomial Equation (4.8), the following results have been 
proved by S. Ruan and J. Wei [10], and so we state them in the following 
three lemmas without proofs. 

Lemma 4.1. If ,0<r  then Equation (4.8) has at least one positive 

root. 

Lemma 4.2. If ,0≥r  then the necessary condition for Equation (4.8) 

to have positive real root is that .032 ≥−≡∆ qp  

Lemma 4.3. If 

,0≥r   (4.9) 

and 

,0≥∆   (4.10) 

then Equation (4.8) has a positive root, if and only if 01 >n  and 

( ) ,01 ≤φ n  where 

.31
∆+−= pn   (4.11) 

Proof. We note that ( ) 0=φ′ n  at 1nn =  and 2n  such that =2,1n  

.3
32 qpp −±−  The proof of this lemma can be seen in the work of S. 

Ruan and J. Wei [10].   
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Thus, by the above lemmas, we now suppose that Equation (4.8) has 
positive roots. Without loss of generality, we suppose that it has three 
positive roots denoted by ,, 21 nn  and .3n  Then, the followings will be 

positive roots of Equation (4.7). 

,, 212111 nn =ω=ω  and ,313 n=ω  or ,3,2,1,1 ==ω kzkk  

which again leads us to Equations (4.5) and (4.6) with ω  is substituted by 
.1kω  

Dividing Equations (4.5) and (4.6) when k1ω=ω  and rearranging, we 

then arrive at the following expression for ,tan 1 τkω  provided 

0:τ ≠ω k1cos  
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We are now in the position to state and prove the following theorem. 

Theorem 4.4. Suppose 

( ) ( ) ( ) .0,0,0 6352416341 >+−++>+>+ rrrrrrandrrrr   (4.13) 

(a) If 0r  and ,0<∆  then all roots of Equation (4.3) have nonzero 

real parts for all .0τ  

(b) If either (i) ,0<r  or (ii) ,0,0,0 1 >∆ nr   and ( ) ,01 nφ  then all 

roots of Equation (4.3) have negative real parts when [ ),,0 0ττ ∈  where 
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where .,3,2,1,3,2,1 …== jk  
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Proof. (a) By contradiction, if Equation (4.3) has a root with zero real 
part for some ,0τ  then this means that Equation (4.8) has a positive 

real root. By (4.2), the necessary condition of this is then that ,0∆  

which contradicts that the fact that .0<∆  Therefore, all roots of 
Equation (4.3) have nonzero real parts for all .0τ  

(b) First, we observe that when ,0=τ  Equation (4.3) reduces to 

( ) .032
2

1
3 =+λ+λ+λ≡λ rrrF   (4.16) 

Then, the Routh-Hurwitz criterion, all roots of Equation (4.16) have 
negative real parts since the conditions in (4.13) hold. This, therefore, 
implies that all roots ( )τλ  of Equation (4.3) have negative real parts at 

the point .0=τ  We can deduce then, from the continuity of ( ),τλ  that all 

roots of Equation (4.3) will have negative real parts for values of τ  in 
some open interval containing .0=τ  This means that all roots of 
Equation (4.11) have negative real parts for positive values of [ )cττ ,0∈  

for some .0>cτ  

However, 0τ  is defined by (4.14) to be the minimum of all the positive 
( )j
kττ =  that solve Equation (4.12). Thus, 0τ  is the minimum of such 

positive τ ’s for which the real parts of some roots of Equation (4.3) 
vanish, provided (i) or (ii) holds. Therefore ,0ττ =  which completes the 

proof.   

Finally, for a Hopf bifurcation to occur, leading to a limit cycle 
surrounding the non-washout steady state ,,, sss zyx  we also need to 

show that 

( ) .0
0
≠

λ
=τττ

τ
d
edR   (4.17) 

This is done in the next theorem. 
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Theorem 4.5. Suppose conditions (i) or (ii) in Theorem 4.4 hold, then 

0iw±=λ  is a pair of purely imaginary roots of Equation (4.3). Moreover, 

if 

( ) ,00 ≠φ′ n   (4.18) 

where 

,,
00

2
00 ττ=== kwwwn   (4.19) 

then Equation (4.17) holds. 

Proof. The first part of this theorem is an immediate consequence of 
Theorem 4.4 and the definition of .0τ  To prove that (4.17) holds, we begin 

by writing ( )λF  in the form 

( ) ( ) ( ) ,exp21
τλ−λ−λ=λ FFF   (4.20) 

where dbaF +λ+λ+λ≡ 23
1  and .2 λ−≡ ceF  Then, on ,0=F  the 

total derivative of F with respect to τ  is 

[ ( )] ,0221 =λ+λ−= λ−λ− ττ
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Also, on ( ) ,0=iwF  we must have ,21
τλ−= eFF  and thus, 
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Now, letting 

( ) ( ),, 2211 FeRRFeRR ==  

( ) ( ),, 2211 FmIIFmII ==  

at ,0ττ =  we see that for ( ) ,0=iwF  we need to have 

( ) ,02
2

2
2

2
1

2
1 =−−+=φ IRIRw  (4.24) 

or equivalently, (4.7) holds, which means 
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2
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2
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2
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2
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2
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Equation (4.23) then becomes 
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10

2
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2
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=  

That is, 

( ) .
2 2

1

0
0 Fw

eR wwdw
d

=
φ

= =λ′ ττ  (4.25) 

Equivalently, 

( ) ( ) .2
1

01
0 F

nh
d

edR ′
=

λ
=

−
τττ

 (4.26) 

Hence, 

{ } {( ) } { ( )}.0
1

00
nhsignd

edRsignd
edRsign ′=

λ
=

λ
=

−
= ττττ ττ

 

Since ( ) ,00 ≠′ nh  it is either positive or negative. Therefore, 
0τττ =

λ
d

edR  

is either positive or negative as well. That is, ,0
0
≠

λ
=τττd

edR  which 

completes our proof.   
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In summary, the above analysis provides the proof of the following. 

Theorem 4.6. If conditions (4.9), (4.10), (4.11), (4.13), and (4.18) hold, 
then a Hopf bifurcation occurs in our model system (3.1)-(3.3) with (3.4)-
(3.6) for a positive composite delay 0ττ =  given by Equation (4.13) and 

(4.14). The non-washout steady state sss zyx ,,  is stable for ,0ττ <  and 

loses its stability at .0ττ =  Furthermore, there will be a positive number 

ε  such that the model system under study possesses periodic solutions for 
values of ( )., 0 ε+∈ τττ 0  

In such a case that ( ),, ε+∈ τττ 0  the periodic solution is a limit 

cycle, that bifurcates from the steady state ( ),,, sss zyx  whose radius 

increases with increasing τ  [3], [7]. 

Figure 2 shows numerical simulations of the model system under 
study, when the parametric values, given in the figure caption, have been 
chosen so that the conditions listed in Theorem 4.6 are satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 



T. PUTTASONTIPHOT 130

 

 

  

 

Figure 2. Computer simulation of the model Equations (3.1)-(3.3) with 
(3.4)-(3.6), where ,9.5,69.1,5.0,0.5,0.1,0.1 1 =γ=/=ε==δ=ε γ Rvz  

079.0,0.5,3.0,01.2,685.0,85.0,3.0 1321 =====ω=ω=ω γ aKKK RS  

,5.0,5.1,507.0,006339669.0,077777778.0,245863 00432 ===== yxaaa  

and ,5.10 =z  showing the solution trajectory tending towards a closed 
limit cycle. Here, the solution trajectory is projected onto (a) the (x, z)-
plane, (b) the (x, y)-plane, and (c) the (y, z)-plane. 
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Figure 3 shows a numerical simulation of the model system (3.1)-(3.3) 
with (3.4)-(3.6), with parametric values chosen to satisfy the inequalities 
identified in Theorem 4.6. Here, =/=ε==δ=ε γ Rvz ,5.0,0.5,1,0 1  

,0.5,3.0,01.2,685.0,85.0,3.0,9.5,69.1 321 ====ω=ω=ω=γ γ RS KKK  

,5.1,507.0,006339669.0,077777778.0,079245863.0 04321 ===== xaaaa  

,5.00 =y  and .5.10 =z  The solution trajectory, projected onto the three 

phase-planes, is seen in this case to tend towards a closed limit cycle as 
predicted for Theorem 4.6. 

  

 

Figure 3. Time courses of (a) susceptible bacteria (x), (b) resistant 
bacteria (y) and (c) nutrient (z) of the case seen in figure, exhibiting 
periodic oscillation. 
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5. Conclusion 

In this paper, we have studied the time delayed chemostat model 
(2.1)-(2.4) for two kinds of bacteria based on antibiotic, in which the 
steady state is reduced by a factor, which depends on the latency delay .τ  
In our study, we have modified the model proposed by Puttasontiphot     
et al. [9] which has been reported to give good qualitative agreement with 
the experimental observations. By incorporating the delay τ  and also 
taking into account, the delay in the action of changing susceptible 
population to resistant bacteria, we have been able to investigate the 
possibility of different dynamic behavior permitted by our model, which 
is dependent on the delays. It is found that the system is stable for 
sufficiently small composite delay .τ  As τ  becomes large, the system can 
exhibit oscillatory behavior. The resulting characteristic equation, once 
linearized around the steady state, also contains this factor (see (4.3)). In 
general, the linear stability analysis, when the system is dependent of 
delay is much more difficult than the case of delay independent system. 
Therefore, our main purpose is to discuss the stability of the delay 
differential equation with delay dependent parameters. In many delay 
differential equations, we know that the large time delay usually plays 
destabilizing role. In other words, if a steady state exists and is unstable 
for ,0ττ =  then it remains unstable for .0ττ >  From the Hopf 

bifurcation theory, we have derived conditions for existence of periodic 
solutions and provided numerical simulations to illustrate these periodic 
solutions. In Figure 2 and Figure 3, we used ,5.0,0.51 =ε= γz  

,3.0,01.2,685.0,85.0,3.0,9.5,69.1 321 ===ω=ω=ω=γ=/ γKKv SR   

,006339669.0,077777778.0,079245863.0,0.5 321 ==== aaaKR  

,5.0,5.1,507.0 004 === yxa  and .5.10 =z  
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